Leitz Reference line

High-precision coordinate measuring machines and gear inspection systems

Mostapha Bouyrakhen
Leitz: Origin of Leitz Metrology

1869: Ernst Leitz takes over the Optische Institut and calls it Ernst Leitz.
1925: Leitz starts serial production of the first 35 mm Leitz Camera
1990: Brown & Sharpe buys IMT division; 1994 renamed to Leitz Brown & Sharpe
2003: Part of Hexagon Metrology; 2005: Re-establishing of Leitz brand
Productportfolio

Large Components *(94m³)*
PMM-G/F

Highest Precision *(0.3 – 0.6µm)*
Infinity, Ultra,
PMM-C, PMM-Xi

High Precision Line *(0.9µm)*
Reference
(HP/XT/Xi/Xe)

High End Shop Floor *(4 Axes)*
SIRIO (SX/BX)
Leitz Reference HP – Xi – XT

What matters in quality assurance and production is the efficiency of the machines.

All the models in the Leitz Reference series are economic scanning measuring machines for solving complex measurement tasks.

They guarantee reliability, high throughput and high accuracy – measuring in all dimensions.
Leitz Reference HP – Xi – XT

Three units in one – the best price/performance ratio

Coordinate measuring machine
Universal measuring device for high-precision checking of all types of geometries. High-precision measurements for R&D, production and quality centres.

Gear inspection system
For medium-sized and large gearwheels with diameters of up to 1,175 mm and for tooth segments and any type of cutting tools. No rotary table required.

Form validation machine
Quality control of industrial form tolerances (sphericity, cylindricity, flatness, straightness, profile form and 2D / 3D surfaces)
Leitz Reference HP – Xi – XT

Leitz **Reference HP:**
Specialising in high performance.

Complex applications in particular depend on achieving very low levels of measurement uncertainty. Coordinate measuring machines of the Leitz Reference HP (**High Precision**) series are the right choice in this situation. They combine high accuracy with optimum measurement throughput.

Leitz **Reference Xi:**
Economic all-rounder with sophisticated Leitz technology.

The outstanding Leitz scanning performance is again a feature of the new Leitz Reference Xi series. These series also appeal because of their wide range of different probe head systems.

The Leitz Reference Xi name says it all – "Xi" stands for "fleXible".
Leitz Reference HP – Xi – XT

Leitz **Reference XT:**
Economic all-rounder with sophisticated Leitz technology.

In addition, the Leitz Reference XT is also leading in terms of temperature resistance: within the eXTended temperature range of 15 to 30 degrees Celsius, the Leitz Reference XT measures reliably thanks to its temperature compensation system. Indispensable for measuring in a production environment.
Leitz Reference HP – Xi – XT

Wide performance spectrum

- The universal Reference line measuring machine is offered in the HP & Xi & XT series.

- Reference line measurement range
 5.4.3 500 x 400 x 300mm
 10.7.6 1000 x 700 x 580mm
 15.9.7 1500 x 900 x 700mm
 20.9.7 2000 x 900 x 700mm
 22.12.9 2200 x 1200 x 900mm
 30.12.9 3000 x 1200 x 900mm
 45.12.9 4500 x 1200 x 900mm
Leitz Reference HP – Xi – XT

Variety of applications.
Measuring system specifications

For the Reference, the same accuracy details (E and P) apply as for all Leitz probes from the standard set.
Leitz Reference HP – Xi – XT

Thought-out design – Clever construction

Mobile gantry with particularly rigid light metal frame

The patented TRICISION™ gantry design provides an optimum rigidity/mass ratio to achieve unique precision and long-term stability.

The granite table has been made from one piece. Patented dovetail guides have been inserted with top precision.

Patented weight compensation for the Z spindle.

High-performance servo motors with electronic drive monitor.
Leitz Reference HP – Xi – XT

High-precision sensors

The probe heads of the LSP-S & X series which are used in the Leitz Reference coordinate measuring machine were developed with high-precision sensors for fast and accurate measuring.

The LSP-S & X series offer the following functions:

- dynamic single-point probing
- self-centering probing
- variable high-speed scanning
- self-centering scanning

The probe head has a measuring touch probe system. All axes of the touch probe system are unrestrained during measuring. This makes it possible to use the touch probe system to measure a part surface in any orientation in space, from any measuring position with consistent accuracy.
Leitz Reference HP – Xi – XT

High-precision sensors

Reference **HP** (LSP-S2)

Reference **HP 5.4.3 (LSP-X3)**

Reference **Xi & XT**
(LSP-X3 & X5 / Tesastar + LSP-X1)
Leitz Reference HP – Xi – XT

<table>
<thead>
<tr>
<th>Performance data</th>
<th>Leitz LSP-S2</th>
<th>Leitz LSP-X5</th>
<th>Leitz LSP-X3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. probe weight</td>
<td>1000 g</td>
<td>500 g</td>
<td>150 g</td>
</tr>
<tr>
<td>Max. probe length</td>
<td>800 mm</td>
<td>500 mm</td>
<td>360 mm</td>
</tr>
<tr>
<td>Scanning / VHSS</td>
<td>Y, Y</td>
<td>Y, Y</td>
<td>Y, Y</td>
</tr>
<tr>
<td>Probing frequency</td>
<td>40/min</td>
<td>35/min</td>
<td>35/min</td>
</tr>
<tr>
<td>Data rate (scanning)</td>
<td>1000pts/sec</td>
<td>1000pts/sec</td>
<td>1000pts/sec</td>
</tr>
<tr>
<td>Collision protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Measuring force</td>
<td>0.1 to 1.2 N, for continuous selection</td>
<td>0.1 to 1.2 N, for continuous selection</td>
<td>0.1 to 0.6 N, for continuous selection</td>
</tr>
</tbody>
</table>
Leitz Reference HP – Xi – XT

High-precision sensors – very long probes

Performance data

Max. probe weight 33 g
Max. probe length Axial 20 – 225 mm
 Laterally up to 50 mm
Scanning / VHSS Y, Y
Probing frequency 35/min
Data rate (scanning) 1000pts/sec
Collision protection Yes
Measuring force 1.2 N
Leitz Reference HP – Xi – XT

High-precision sensors – very long probes

Performance data

Head
Motorised indexible turning and swivel head

Connection interface
TKJ "Tesa Kinematic Joint"

Angle steps
5° 7.5°

Number of positions
2,952

Repro. of positions
0.5 µm

Torque
0.6 Nm

Length
70 mm

A angle
+90° to -115°
Scanning - ScanCatch

1. Scanning a known contour
2. After losing contact
3. ScanCatch goes back to the last position with correct immersion depth and continues from there (with reduced speed)
4. Accelerates to resume high-speed scanning

⇒ Important for pallet measurements and BLISK measurements
The Reference temperature sensor (replaceable)

Replaceable temperature sensor (optional) makes it possible to carry out automatic part temperature measuring. The temperature sensor is automatically or manually changed using a special probe stylus mount.

This is held at the Leitz probe head by a spring-tensioned gripper which is pneumatically operated.

The angle position can be adjusted to suit.

Several temperature probes can be used in different positions.

The temperature probe is deposited in the probe depository.
Leitz Reference HP – Xi – XT

Leitz rotary tables, iRT & oRT

- Table diameter up to 600mm
- Permissible table load up to 550 kg
- 3-point bearing for unambiguous measurements
- Long-term precision through separating the structural part from the metrological part
- Thermally symmetrical design prevents temperature from affecting the accuracy of the table
- The parts pallet can be adapted to customer requirements.
Leitz Reference HP – Xi – XT

Leitz rotary tables, iRT & oRT

Versions

oRT: "On top" version, removable
iRT: integrated into the machine table

Dimensions

<table>
<thead>
<tr>
<th></th>
<th>oRT / iRT2</th>
<th>oRT / iRT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table diameter</td>
<td>185 mm</td>
<td>415 mm</td>
</tr>
<tr>
<td>Permitted table load</td>
<td>50 kg (optionally 90 kg)</td>
<td>250 kg</td>
</tr>
<tr>
<td>table load (centrally applied mass)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>oRT / iRT6</td>
<td></td>
</tr>
<tr>
<td>Table diameter</td>
<td>600 mm</td>
<td></td>
</tr>
<tr>
<td>Permitted table load</td>
<td>550 kg</td>
<td></td>
</tr>
<tr>
<td>table load (centrally applied mass)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Leitz Reference HP – Xi – XT

Leitz rotary tables, iRT & oRT

As an option, the Reference HP and Reference Xi can be fitted with rotary table as per the Table.

<table>
<thead>
<tr>
<th>Reference HP & Xi</th>
<th>oRT 2</th>
<th>iRT 2</th>
<th>oRT 4</th>
<th>iRT 4</th>
<th>oRT 6</th>
<th>iRT 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.3</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.7.6</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.9.7</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.9.7</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12.9</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>30.12.9</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>45.12.9</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Leitz Reference HP – Xi – XT

Leitz rotary tables, iRT & oRT

- High-precision angle measuring system with a resolution of 0.035 angle seconds.

- Max. revolutions

 oRT / iRT 2
 3 revolutions/min
 oRT / iRT 4
 12 revolutions/min
 oRT / iRT 6
 8 revolutions/min

- Mass moment of inertia

 oRT / iRT 2
 5 kgm²
 oRT / iRT 4
 15 kgm²
 oRT / iRT 6
 20 kgm²
Reference probe change stand

TravelRack

The TravelRack with the magazine spaces is attached at the left-hand gantry support.

- On in combination with Tesastar & LSP-X1
- Change of probes at any desired position
- Shorter probe changing times
- No restriction of the measurement volume

The automatic probe changer is equipped with 3 deposit stations and 3 mounts as standard.

Additional deposit stations can be added as an option.
Software
Leitz Reference HP – Xi – XT

Intelligent software

The entire system is rounded off with intelligent, comprehensive software. Two versions are available:

QUINDOS or PC-DMIS.

Both systems are user-friendly and CAD-based and ensure efficient programming as well as highly efficient evaluation of measured data.