⊝(і)-⊛ РИФТЭК

СИСТЕМА КОНТРОЛЯ ДИАМЕТРА, СКД-МШ

1. ОБЩИЕ СВЕДЕНИЯ

Система предназначена для бесконтактного измерения, контроля и регулирования диаметра технологических объектов, в частности медицинских шлангов при их производстве.

2. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ

Параметр	Значение		
Диапазон контроля, мм	25		
Расстояние между излучателем и приемником, L, мм	100		
Погрешность ¹ , мкм	±20		
Количество одновременно контролируемых сечений	2		
Быстродействие, измер/с	1000		
Тип регулятора	ПИД		
Выходной интерфейс	RS485		
Напряжение питания, В	220		
Макс. потребляемая мощность, Вт	1,5		
Класс защиты	IP67		
Рабочая температура, °С	-10+50		

3. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Система включает два оптических микрометра, блок управления экструдером и пакет программного обеспечения для ПК.

3.1. На рис.1 представлена система оптических микрометров, предназначенных для непосредственного измерения диаметра. В системе оптические микрометры установлены перпендикулярно друг другу. В основу работы микрометров положен теневой принцип. Микрометр состоит из двух блоков – излучателя и приемника. Излучение полупроводникового лазера коллимируется объективом. При размещении объекта в области пучка, формируемое теневое изображение сканируется линейкой ПЗС-фотоприемников. По положению теневых границ на каждом из микрометров процессор рассчитывает размер объекта. Информация о текущем диаметре передается в ПК. На основании отклонения текущего диаметра от заданного номинального рассчитывается управляющее воздействие для экструдера.

Page 1/7, Rev A 28.01.2008r.

4. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Программное обеспечение предназначено для съема и визуализации данных с микрометров, управления системой регулирования диаметров. ПО способно обслуживать максимум четыре устройства измерения диаметра, объединенных в одну сеть и подключенных к персональному компьютеру.

4.1. Настройки программы.

После запуска программы, появляется окно, показанное на рис. 2.

🗅 Silla [Управление]	
Файл Помощь	
🧭 🥵 ё Открыть порт Настройки Профили	0.00
Экструдер 1	Экструдер 2
0 0,00 MM 0 • ▶ ⓒ ■	0 0,00 mm
Параметры Миникум : 10,85 нн Значение D1 : 00,00 нн Маккинум : 11,15 нн Значение D2 : 00,00 нн Нонинал : 11,00 нн Овальность : 00,00 нн Профиль N? 6 Статус : Остановлен	Параметры Мининум : 11,90 нн Значежие D1: 00,00 нн Маковнум : 12,10 нн Значежие D2: 00,00 нн Номикал : 12,00 нн Овальность : 00,00 нн Профиль №:5 Статус : Остановлен
Экструдер 3	Экструдер 4
0,00 мм	о О,ОО MM
С Параметры Параметры Минимум : 10,85 мм Значение D1 : 00,00 мм Макимум : 11,15 мм Значение D2 : 00,00 мм Нонинал : 11,00 мм Оваљиость : 00,00 мм Профиль №: 6 Статус : Остановлем	С С С Статус : Остановлен

Рис. 2

Окно программы логически разделено на четыре независимых блока, по каждому на одно устройство измерения диаметра. Каждый блок отображает текущий усреднённый диаметр, овальность, состояние и т.д. и имеет свой независимый журнал и возможность генерации протокола.

В качестве первоначальной настройки необходимо задать время опроса устройств измерения диаметра (период опроса каждого из блоков) и время усреднения в диалоге настроек (Puc.3) нажав кнопку «Настройки» в главном окне программы.

Page 2/7, Rev A 28.01.2008r.

бщие настройки	
Время опроса :	ОК
1000 🔶 мсек	Отмена
Время усреднения :	
2500 🚖 мсек	
Порт для контроллера управления :	
СОМ2	
Использовать схему управления	
☑1 2 3 4	
Автоотчёт	
Старый пароль :	
Новый пароль :	

Время опроса – это интервал времени, по истечении которого происходит опрос устройства измерения диаметра. Минимальное время опроса – 500 мсек. Оптимальное время опроса от 2000 мсек.

Время усреднения – это интервал времени, в течение которого усредняются все значения, полученные от устройства измерения диаметра.

Для подключения системы управления используются кнопки-флажки «Использовать схему управления» (каждый из флажков на свой экструдер). При нажатии на кнопку смены бобины на экструдере программа автоматически сохранит файл базы в папку Database в формате extruder-n_d_m_y_h_m.txt, где n – номер экструдера, d – день, m – месяц, y – год, h – час и m – минуты, соответствующие времени записи в журнал. Кроме того, программа автоматически запустит процесс измерения с внесением записей в журнал заново, предварительно очистив его.

Флажок «Автоотчёт» запускает автоматическое формирование отчёта и печать его после нажатия кнопки смены бобины на экструдере.

Рис. 3. Окно общих настроек программы

Для блокирования несанкционированного изменения данных в журнале используется защита паролем на операции удаления и изменения записей. По умолчанию пароль отсутствует. Для того чтобы изменить пароль необходимо ввести старый пароль и новый. Если старый пароль не совпадет с установленным, программа не сохранит новый пароль, оповестив пользователя об этом.

ВНИМАНИЕ!

Время усреднения должно быть больше чем время опроса, иначе отображаемые сведения о текущем диаметре и овальности будут не верны. При малом времени опроса (менее 500 мс) время формирования отчёта для печати может занимать до нескольких минут.

Следующий этап в настройке системы – это запись предустановленных значений. На рисунке 4 показан диалог внесения предустановленных значений. Для его вызова предусмотрена кнопка «Профили» в главном окне программы.

В программе предусмотрено 15 пользовательских профилей для хранения предустановленных значений номинального диаметра, минимального и максимального диаметра, настроек выхода по напряжению.

Минимальное и максимальное значение диаметра соответствуют допускам, о выходе за которые система будет оповещать пользователя всплывающим окном и звуковым сигналом.

Значения минимального, максимального и номинального значения диаметра должны быть записаны в микрометрах.

Управление выходом по напряжению происходит по следующему алгоритму:

1. Если значение усреднённого диаметра меньше номинала:

$$U_{\text{выхода}} = ((D_{\text{номинальное}} - D_{\text{усреднённое}}) \times K) + U_{\text{начальное}},$$

где

*U*_{выхода} – напряжение на управляющем устройстве каждого блока,

Page 3/7, Rev A 28.01.2008r.

⊝⊕⊛ РИФТЭК

СИСТЕМА КОНТРОЛЯ ДИАМЕТРА, СКД-МШ

$D_{\text{номинальное}}$	– номинальный диаметр (в микрометрах),
D_{ycped нённое	– усреднённый диаметр (в микрометрах),
Κ	– коэффициент для выхода,
$U_{{\it ha}{\it v}a{\it n}{\it b}{\it hoe}}$	– начальное значение напряжения.

2. Если значение усреднённого диаметра больше номинала:

 $U_{\text{выхода}} = U_{\text{начальное}} - ((D_{\text{усреднённое}} - D_{\text{номинальное}}) \times K) ,$

где	
<i>U</i> выхода	– напряжение на управляющем устройстве каждого блока,
$D_{\text{номинальное}}$	 номинальный диаметр (в микрометрах),
$D_{ycpedhённoe}$	 – усреднённый диаметр (в микрометрах),
K	 коэффициент для выхода,
$U_{\it начальное}$	– начальное значение напряжения.

Для расчёта времени изменения выхода по напряжению, необходимо умножить число, установленное в окне «Изменять значение выхода…» (рис. 4) на значение времени усреднения (рис. 3).

Ірофиль 1	Профиль 2	Профиль 3	Профиль 4	Профиль 5	Профиль	
Название	профиля :					
Ди	аметр 8,0 мм					
Минимум			Номинал:			
7950 🚖			800	8000 🚖 1		
Максимум	1:		Журналир	овать кажды	в:	
810	10	🚖 мкм	100	0	🔹 мсек	
Начальное	е значение вь	ыхода:	Ксэфициен	т для выхода	a:	
1,200			1,100			
Изменять	значение вы	хода каждое :				
4		🔹 изме	рение			

Рис. 4. Окно внесения предустановленных значений

Диапазон значений выхода по напряжению – от 0 до 10 В.

Для удобства работы с настроенными пользовательскими профилями каждому из них устанавливается собственное название.

4.2. Запуск и работа

После настройки системы необходимо открыть порт для работы с системой через USB. Для этого предусмотрена кнопка «Открыть порт» (рис. 2).

В каждом из блоков существуют четыре элемента управления процессом измерения (слева направо).

- 1. Кнопка начала измерения с записью в журнал (стандартный режим);
- 2. Кнопка начала измерения без записи в журнал (режим настройки блока);

Page 4/7, Rev A 28.01.2008r.

3. Кнопка сброса программного регулирования (на выходе по напряжению устанавлива-

ется начальное значение выхода и процесс регулирования запускается заново); 4. Остановка процесса измерения;

Рис. 4. Элементы управления процессом измерения

ВНИМАНИЕ!

Управление процессом измерения осуществляется только при нажатой кнопке «Отрыть порт» (после запуска меняет своё назначение и текст на «Закрыть порт»).

ВНИМАНИЕ!

При включении питания время выхода на рабочий режим измерительной системы (прогрев лазера) может составлять 15-30 минут. При этом желательно, чтобы в области измерения не было объектов. Если же измеряемый объект во время прогрева находился в области измерения, то после прогрева необходимо удалить объект из области измерения на время 30 – 60 секунд.

Во время измерения с записью в журнал доступ к журналу невозможен. Для получения доступа к журналу необходимо остановить процесс измерения.

Для выбора активного профиля с предустановленными значениями допусков, номинального диаметра и настроек выхода по напряжению достаточно вызвать контекстное меню в поле каждого блока и выбрать нужный профиль. На активном профиле установиться флажок.

4.3. Журнал и отчет

В процессе измерения данные накапливаются в журнале и после остановки процесса измерения существует возможность просмотра журнала в двух режимах: графическом либо текстовом. Кроме того, существует возможность удаления записей в журнале и введение поправочного коэффициента. Для вызова журнала используется кнопка «Журнал» в каждом блоке (рис. 3).

Page 5/7, Rev A 28.01.2008r.

Nº	Значение (мм)	Минимум (мм)	Максимум (мм)	Номинал (мм)	Овальность (мм)	Время
1	2,04	1,91	2,10	2,00	0,02	12:15:33 19.11.2
2	2,04	1,91	2,10	2,00	0,02	12:15:34 19.11.2
3	2,04	1,91	2,10	2,00	0,02	12:15:35 19.11.2
4	2,04	1,91	2,10	2,00	0,02	12:15:36 19.11.2
5	2,04	1,91	2,10	2,00	0,02	12:15:38 19.11.2
6	2,04	1,91	2,10	2,00	0,01	12:15:39 19:11.2
7	2,04	1,91	2,10	2,00	0,01	12:15:40 19:11:21
8	2,04	1,91	2,10	2,00	0,01	12:15:41 19:11.2
9	2,04	1,91	2,10	2,00	0,01	12:15:42 19:11.2
10	2,04	1,91	2,10	2,00	0,01	12:15:43 19.11.2
11	2,04	1,91	2,10	2,00	0,02	12:15:44 19:11.2
12	2,04	1,91	2,10	2,00	0,02	12:15:46 19.11.2
13	2,04	1,91	2,10	2,00	0,02	12:15:47 19:11.2
14	2,04	1,91	2,10	2,00	0,02	12:15:48 19.11.2
15	2,04	1,91	2,10	2,00	0,02	12:15:49 19:11.2
16	2,04	1,91	2,10	2,00	0,02	12:15:50 19:11.2
17	2,04	1,91	2,10	2,00	0,02	12:15:51 19:11.2
18	2,04	1,91	2,10	2,00	0,01	12:15:52 19.11.2
19	2,03	1,91	2,10	2,00	0,01	12:15:53 19:11.2
20	2,03	1,91	2,10	2,00	0,01	12:15:55 19.11.2
21	2,02	1,91	2,10	2,00	0,02	12:15:56 19.11.2
<	0.00	14 A4	0.40	0.00	1000	
) Текст	овый вид	Кор	ректирующее зна	ачение: Очис	стить журнал	

Рис. 5. Текстовый вид журнала

В текстовом виде журнал представляет собой таблицу со значениями усреднённого диаметра, допусков, поминального диаметра, овальности и времени измерения. Для удаления записи достаточно выделить нужную и нажать кнопку «Delete» на клавиатуре. Для введения поправочного коэффициента достаточно ввести его значение в окно «Корректирующее значение» и нажать кнопку «Коррекция». Данное значение мультиплицируется со всеми значениями усреднённого диаметра.

Предусмотрена возможность сохранения журнала в текстовый файл, для этого необходимо нажать кнопку с пиктограммой дискеты и выбрать место сохранения файла.

Рис. 6. Графический вид журнала

Page 6/7, Rev A 28.01.2008r.

В графическом виде журнал представляет собой график, где:

- кривая красного цвета значения диаметров;
- прямые зелёного цвета границы допуска;
- прямая синего цвета номинальное значение.

При вводе любых изменений в журнале программа просит ввести пароль. Если же он не установлен, достаточно оставить поле ввода пароля пустым.

Для формирования отчёта по накопленным данным в каждом блоке используется кнопка «Печать» (рис. 2).

СП "Ф	РЕБОР" ООО	6.12.2007 15:27:01	На рисунке 7 представлен отчёт-
Накменодание:			данных, накопленных в журнале.
Артниул			
Партнис			В отчёт входит:
Сырьё:			- график усреднённого диаметра с
-			пределами;
Bec:			- процентное распределение среднего
Метраж			диаметра;
Экструдер №:	2		- рассчитанные максимум и минимум
Mannana			из графика усреднённых диаметров;
эиструдера:			- гистограмма распределения.
Контролер:			
	had		Для печати сформированного отчёта
en d	pod		используется кнопка с изображением
81			принтера в окне
			1 1
7,9			
7.8			
Растределения средно	ro manerpa (%)	E- man (x x):	
		Manager (aw)	
		3,00	
»		Managyz (z z):	
30		7,99	
29		Cpeppe (xx):	
30		7,99	
13		C:	
7,993 7,993 7,993 7,	994 7,994 7,994 7,994 7,994 7,995 7,995 7,995	0,0003	

Рис. 7. Отчёт по накопленным данным

5. КОМПЛЕКТ ПОСТАВКИ

Микрометр Серии РФ651 Блок управления Комплект ПО 2 шт (на экструдер) 1 шт (на экструдер)

Page 7/7, Rev A 28.01.2008r.